On a class of frozen regularized Gauss-Newton methods for nonlinear inverse problems
نویسنده
چکیده
In this paper we consider a class of regularized Gauss-Newton methods for solving nonlinear inverse problems for which an a posteriori stopping rule is proposed to terminate the iteration. Such methods have the frozen feature that they require only the computation of the Fréchet derivative at the initial approximation. Thus the computational work is considerably reduced. Under certain mild conditions, we give the convergence analysis and derive various estimates, including the order optimality, on these methods.
منابع مشابه
Newton-type regularization methods for nonlinear inverse problems
Inverse problems arise whenever one searches for unknown causes based on observation of their effects. Such problems are usually ill-posed in the sense that their solutions do not depend continuously on the data. In practical applications, one never has the exact data; instead only noisy data are available due to errors in the measurements. Thus, the development of stable methods for solving in...
متن کاملA convergence analysis of the iteratively regularized Gauss--Newton method under the Lipschitz condition
In this paper we consider the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed inverse problems. Under merely the Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense.
متن کاملA convergence analysis of the iteratively regularized Gauss-Newton method under Lipschitz condition
In this paper we consider the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed inverse problems. Under merely Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense.
متن کاملFurther convergence results on the general iteratively regularized Gauss-Newton methods under the discrepancy principle
We consider the general iteratively regularized Gauss-Newton methods xk+1 = x0 − gαk (F (xk)F (xk))F (xk) ( F (xk)− y − F (xk)(xk − x0) ) for solving nonlinear inverse problems F (x) = y using the only available noise yδ of y satisfying ‖yδ − y‖ ≤ δ with a given small noise level δ > 0. In order to produce reasonable approximation to the sought solution, we terminate the iteration by the discre...
متن کاملFast spectral methods for the shape identification problem of a perfectly conducting obstacle
We are concerned with fast methods for the numerical implementation of the direct and inverse scattering problems for a perfectly conducting obstacle. The scattering problem is usually reduced to a single uniquely solvable modified combined-field integral equation (MCFIE). For the numerical solution of the M-CFIE we propose a new high-order spectral algorithm by transporting this equation on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 79 شماره
صفحات -
تاریخ انتشار 2010